Tips and Ticks Handshake Problem


Tips and Ticks Handshake Problem

Suppose there are n people in the party. The first person shakes hand with the other (n-1) guests. The second guest shakes hand with the other (n-2) guests. this will continue until the (n-1) th guest shakes hand with the nth guest.

Total number of handshakes is (n-1) + (n-2)... + 3 + 2 + 1.

= ((n-1)(n))/2

For example, 6 people in a party shake hand with other guests. So how many handshakes will be there?

=((6-1)(6))/2

=15.

Logo
Logo
മിഷൻ ഇന്ദ്രധനുസ് പദ്ധതിയിൽ ഉൾപ്പെടുന്ന 7 രോഗങ്ങൾ

Code: ഇപ്പൊ ഭിക്ഷയ്ക്കു അവിടെ പോഡി  .

ഇപ്പൊ ഭി - ഹെപ്പറ്റൈറ്റിസ് ബി .
ക്ഷ - ക്ഷയം .
അ - അഞ്ചാം പനി .
വി - വില്ലൻ ചുമ .
ടെ - ടെറ്റനസ് .
പോ - പോളിയോ .
ഡി - ഡിഫ്ത്തീരിയ.
...

Open

Important Maths Formulas ( പ്രധാനപ്പെട്ട ഗണിത സൂത്രവാക്യങ്ങൾ )

Important Maths Formulas .

(a ± b) 2 = a 2 ± 2ab + b 2 .


(a + b + c) 2 = a 2 + b 2 + c 2 + 2(ab + bc + ca).


(a + b + c + d) 2 = a 2 + b 2 + c 2 + d 2 + 2(ab + ac + ad + bc + bd + cd) .


Geometry formulas .

Perimeter ( ചുറ്റളവ് ) .


Perimeter of a square: P=4a.

    a: length of one side.


Perimeter of a rectangle: P=2(l+w).

    l: length.

    w: width.


Perimeter of a triangle: P=a+b+c.

    a, b, and c: lengths of the 3 sides.


Area ( വിസ്തീര്‍ണ്ണം ) .
LINE_FE...

Open

Combinations and Permutations

Permutation and combination related questions are common in PSC and Bank exams.

Before going to Combinations and Permutations, first lean about factorial. .

If  n  is a positive integer then, factorial of n is denoted as n! . .


4! = (1 x 2 x 3 x 4 ) = 24.


Permutations are for lists of items, whose order matters and combinations are for group of items where order doesn’t matter. in other words, .

When the order of items doesn\\\'t matter, it is called as Combination.
When the order of items does matter it is called as Permutation.


The number of permutations of n objects taken r at a time is determined by using this formula:.

C(n,r)=n!/((n−r)!r!) .

Combination : Picking a team of 3 people from a football coaching group of 10. C(10,3) = 10!(3!(10−3)!) = 120. ....

Open